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Abstract

The Multiscale Finite-Volume (MSFV) method has been recently developed and tested for multiphase-flow problems
with simplified physics (i.e. incompressible flow without gravity and capillary effects) and proved robust, accurate and
efficient. However, applications to practical problems necessitate extensions that enable the method to deal with more com-
plex processes. In this paper we present a modified version of the MSFV algorithm that provides a suitable and natural
framework to include additional physics. The algorithm consists of four main steps: computation of the local basis func-
tions, which are used to extract the coarse-scale effective transmissibilities; solution of the coarse-scale pressure equation;
reconstruction of conservative fine-scale fluxes; and solution of the transport equations. Within this framework, we
develop a MSFV method for compressible multiphase flow. The basic idea is to compute the basis functions as in the case
of incompressible flow such that they remain independent of the pressure. The effects of compressibility are taken into
account in the solution of the coarse-scale pressure equation and, if necessary, in the reconstruction of the fine-scale fluxes.
We consider three models with an increasing level of complexity in the flux reconstruction and test them for highly com-
pressible flows (tracer transport in gas flow, imbibition and drainage of partially saturated reservoirs, depletion of gas–
water reservoirs, and flooding of oil–gas reservoirs). We demonstrate that the MSFV method provides accurate solutions
for compressible multiphase flow problems. Whereas slightly compressible flows can be treated with a very simple model, a
more sophisticate flux reconstruction is needed to obtain accurate fine-scale saturation fields in highly compressible flows.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Important human activities such as sustainable management of water resources and optimal exploitation of
oil reservoirs presuppose a deep understanding of flow in porous media, which makes it possible to develop
reliable tools to simulate and predict the response of systems under different flow scenarios. When dealing with
large porous media such as subsurface reservoirs, one of the most challenging problems is the dramatic spatial
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variability of medium properties such as hydraulic permeability. The latter typically displays complex corre-
lation structures that span a wide range of scales [8,6]. Most important, the small-scale heterogeneity affects
flow and transport at much larger scales and has an impact on the macroscopic response of the reservoir. The
importance of fine-scale effects has been widely recognized and has led toward higher-resolution techniques for
reservoir characterization. Nowadays, high-resolution permeability fields consisting of many million cells can
be obtained, e.g. by geostatistical techniques or geological models. The computational costs of numerical sim-
ulations—which often include investigation of different flow scenarios or Monte Carlo simulations involving
hundreds of realizations of equally probable permeability fields—soon become prohibitive.

To increase efficiency, a variety of upscaling techniques to coarsen the permeability models have been devel-
oped over the last three decades (see [13] or [14] for a comprehensive review). The common idea to all these
methods is to replace a heterogeneous medium by a homogeneous medium characterized by an equivalent (or
effective) permeability, which correctly reproduces the large-scale evolution of some quantity of interest (e.g.
pressure, flux, energy dissipation). Even though these methods can be successfully employed for a variety of
problems, they might fail when applied to fields displaying complex non-stationary correlation structures.
Moreover, as the definition of equivalent permeability is not unique, but depends on the observation variable
of interest, extension to real problems governed by nonlinear equations and involving many physical processes
(such as reactive transport or multiphase flow) is problematic. The loss of information introduced by coars-
ening together with the lack of realistic assumptions about the small-scale distribution of the system variables
will result in inaccurate predictions of the large scale behavior.

To overcome these problems a flourishing activity on multiscale modeling of oil reservoirs has developed.
In contrast to upscaling, the focus here is not only to capture the large-scale behavior of the system, but to
solve the problem with the original resolution. The goal is to be as accurate as fine-sale simulations keeping
the computational costs comparable with traditional upscaling methods. In recent years several promising
advances have been made in this area. All methods employ fine and coarse computational grids and deal with
a pressure-saturation formulation of multiphase flow. The latter involves the solution of an elliptic/parabolic
flow equation for the pressure and hyperbolic transport equations for the saturations. These equations are
highly nonlinear and tightly coupled.

Gautier et al. [7] describe an approach for fast simulation of flow and transport in heterogeneous media.
They use nested grids to construct the fine-scale flow field, then they integrate the saturation equation along
the streamlines to solve the transport problem. Hou and Wu [9] present a multiscale finite-element method.
They construct basis functions that are specifically designed to capture the fine-heterogeneity. Localization
is achieved by assuming ad hoc boundary condition at the coarse element interfaces. In order to reduce the
influence of local boundary conditions, an over-sampling technique is employed. In general, however, the
reconstructed fine-scale velocity field is not conservative. Later, Chen and Hou [4] propose a conservative
mixed finite-element multiscale method. They provide clear evidence that a locally conservative fine-scale
velocity field is a necessary requirement for accurate modeling of fluid transport. Arbogast [2] and Arbogast
and Bryant [3] present another mixed finite-element multiscale approach for two-phase flow in heterogeneous
media. Again, localization is achieved by special boundary conditions at the coarse-element boundaries. The
fine-scale influence is then coupled with the coarse-scale effects by means of numerical Greens functions. A
mixed multiscale finite element that resembles the one by Chen and Hou is proposed by Aarnes et al. [1]
who use it together with a streamline method to solve the saturation equation. Recently, Jenny et al.
[10,11] presented a multiscale finite-volume (MSFV) method. They use two sets of basis functions to solve
the elliptic problem efficiently and then they compute a locally conservative velocity field. Comparison with
an established finite-volume simulator demonstrated the excellent performance of the MSFV algorithm in
terms of both accuracy and efficiency. In contrast to other multiscale methods, the MSFV method is based
on a finite-volume discretization and therefore has technical and practical advantages for industrial oil-reser-
voir simulation. Indeed, a mass conservative velocity field is obtained by solving a mass balance equation,
which, we believe, facilitates incorporating more complex physics. Moreover, it follows the main-stream of
the currently established simulators in reservoir engineering, which are based on finite-volume discretization.
This fact increases the appeal of the method for industrial and practical applications.

All the methods above deal with single- or two-phase flow and only consider very simplified physics. They
neglect capillary pressure, gravity, and dissolution. They also assume that both the porous medium and the
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fluids are incompressible. In this paper we explain how the last two assumptions can be relaxed in the frame-
work of the MSFV method while maintaining the advantages in terms of efficiency. This is made possible by a
major change in the original MSFV algorithm that increases computational efficiency for most cases and sim-
plifies the incorporation of additional physical processes.

2. Governing equations

In this paper we consider the flow of m compressible phases in a porous medium, such that we have a sys-
tem of m partial differential transport equations of the form
o

ot
ð/baSaÞ þ r � ðbauaÞ ¼ �baqa; ð1Þ
where a = 1, . . . , m denotes the phase. The coefficient ba characterizes the a-phase compressibility and is a
function of the pressure p. It can be regarded either as the phase density or as the inverse of the a-phase for-
mation-volume factor, Ba = 1/ba, which is an engineering quantity widely used in the oil industry. Ba is defined
as the ratio of the volume occupied by a fixed mass of the fluid at reservoir conditions to the volume occupied
at standard conditions. Porosity, /, may also be a function of pressure for elastic porous media. If we neglect
capillary pressure and gravity, the Darcy velocity (specific flux) of the a-phase is
ua ¼ �
kra

la

k � rp; ð2Þ
where k is the absolute permeability tensor, kra the relative permeability and la the viscosity of the a-phase. In
the following, we will refer to the Darcy velocity simply as ‘‘velocity’’, keeping in mind that Eq. (2) actually
represents a volumetric flux per unit area and not the real velocity of the a-phase in the pore (the latter is
obtained dividing the Darcy velocity by the porosity). The volumetric source terms, qa, and the relative per-
meabilities, kra, are functions of saturation, whereas the viscosities, la, are assumed to be constant. Eq. (1) are
solved for pressure, p, and phase saturations, Sa, on a domain X with some boundary conditions at oX. Intro-
ducing the constitutive relationships, ba(p) and /(p), and the relative permeability–saturation relationships,
kra(Sa), one obtains a closed system consisting of the m nonlinear partial-differential equation (1), and the
constraint
Xm

a¼1

Sa � 1. ð3Þ
An equivalent mathematical formulation that is widely used due to several numerical advantages is the pres-
sure-saturation formulation. In this formulation, the primary variables are the pressure and the saturations of
m � 1 phases. Eq. (3) is used to eliminate the mth saturation. The set of partial differential equations, Eq. (1),
is manipulated to obtain an equation for the pressure and m � 1 transport equations for the phase saturations.
To obtain the pressure equation, Eq. (1) are divided by ba and added. After a few elementary manipulations
one obtains
r � ðk � rpÞ ¼ qþ o/
ot
þ
Xm

a¼1

/Sa
o ln ba

ot
�
Xm

a¼1

½ðka � rpÞ � r ln ba�; ð4Þ
where q ¼
Pm

a¼1qa is the total volumetric-source term, ka = kkra/la are the a-phase mobility tensors, and
k ¼

Pm
a¼1ka is the total-mobility tensor. The m � 1 transport equations have the same form as Eq. (1) and

are hyperbolic. Eq. (4) is in general parabolic because / and ba are functions of p.
3. Multiscale finite-volume method for incompressible flow

For incompressible fluids and rigid porous media, the last three terms on the r.h.s. of Eq. (4) become zero
and the equation degenerates into the elliptic equation
r � ðk � rpÞ ¼ q on X. ð5Þ
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To solve this type of equations efficiently in highly heterogeneous porous media, Jenny et al. [10] proposed the
MSFV algorithm. An auxiliary coarse grid is imposed and together with its dual grid it is used to solve
the problem (Fig. 1). Two sets of basis functions are used: the first to find the effective parameters for the
coarse problem, the second set to reconstruct a velocity field with the same resolution as the original problem.
The latter is determined by the resolution of the permeability-field heterogeneity, which can be much finer than
the imposed coarse grid. The algorithm guarantees that the reconstructed fine-scale velocity field is conserva-
tive, which makes it suitable to be used to solve the transport problems.

Jenny et al. [11,12] apply the MSFV method to incompressible multiphase flow. In this case, pressure and
transport equations are tightly coupled through the total mobility, k, which is a function of the saturations. To
avoid a computationally expensive recalculation of the basis functions, an adaptivity criterion based on total
mobility changes was introduced. Once the pressure field is computed, the phase-transport problems are
solved on the fine grid. This original version of the MSFV algorithm can be summarized by the following
steps:

(1) Given the fine grid on a domain X, a conforming coarse grid with M nodes and N cells is constructed.
Each coarse cell, �Xi2½1;N �, is composed of multiple fine cells.

(2) A dual coarse grid, conforming to the fine grid, is constructed such that each dual coarse cell, ~Xe2½1;M �,
contains exactly one node of the coarse grid in its interior. The dual coarse grid has N nodes, xi2[1,N],
exactly one in the interior of each coarse cell (Fig. 1).

(3) For each dual coarse cell, ~Xe, a set of dual basis functions, ~He
i , is constructed; one dual basis function for

each node xi of the dual cell, ~Xe. For each dual basis function an elliptic problem is solved on ~Xe.
(4) For each coarse cell, �Xk, a set of velocity basis functions, �Hki, is constructed, one velocity basis function

for each node xi of the dual cells for which �Xk \ ~Xe 6¼ ;. For each velocity basis function an elliptic prob-
lem is solved on �Xk.

(5) The effective transmissibilities of the coarse grid are extracted from the dual basis functions, ~He
i .

(6) The coarse-scale transmissibilities are used to compute the coarse-scale pressure values, �pi, located at the
points xi.

(7) A fine-scale pressure field, ~p, is reconstructed in each coarse cell, �Xk, by superimposing the velocity basis
functions multiplied by the corresponding coarse-scale pressure value, i.e. ~p ¼

P
i�pi

�Hki. The resulting fine
scale velocity is conservative at the fine-scale.

(8) The fine-scale velocity field is used to solve the phase transport equations on the fine grid using a frac-
tional flow formulation. To avoid severe time step size restrictions, an implicit scheme can be employed
locally on each coarse domain. Global coupling is then achieved by a Schwarz overlap technique.

(9) If the saturation solution converges, we go directly to step 12.
Fig. 1. Two-dimensional fine grid (thin dotted line) with the imposed coarse grid (bold solid lines) and the corresponding dual coarse grid
(bold dashed lines).
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(10) Changes of k require that basis functions are recalculated, which can be done locally and adaptively.
Thus, steps 3, 4, and 5 are repeated only for those dual cells and coarse cells, in which the variation
of k are larger than a defined tolerance.

(11) Steps 6–10 are repeated.
(12) The next time step is performed by repeating steps 3–11.

Note that this algorithm consists of two parts. The first part provides effective transmissibilities to compute
the coarse-scale pressure. In the second part, a conservative fine-scale velocity field is reconstructed, which
allows solving the system of phase transport equations on the fine grid.

This algorithm has the disadvantage of introducing a set of velocity basis functions which are computation-
ally expensive. In this paper we propose a modification of the above algorithm in order to eliminate the second
set of basis functions. The new algorithm has the advantage of being much more efficient in most applications
and makes it easier to incorporate additional physical processes. The main structure of the algorithm remains
unchanged. Modifications concern only step 4, which is suppressed, and step 7, which now reads

(7a) A fine-scale pressure field, ~p, is reconstructed in the computational domain, X, by superimposing the
dual basis functions multiplied by the corresponding coarse-scale pressure value, i.e. ~p ¼

P
e

P
i�pi

~He
i .

(7b) From the pressure field ~p, the fluxes across the coarse-cell boundaries, o�Xi, are extracted and used as
Neumann boundary conditions to solve the pressure problem in each coarse cell, �Xi. The computed
fine-scale velocity field is conservative.

Even if we reconstruct the velocity field in each coarse block at each iteration, in most cases this modified
algorithm is more efficient than the algorithm proposed by Jenny et al. [11,12]. Indeed, in the MSFV method
the basis functions have to be typically recomputed in 10–30% of the coarse cells [12]. If the velocity basis func-
tions have to be updated in a corse cell, nine local problems have to be solved in two dimensions. Thus, assum-
ing that the velocity basis functions are updated in 20% of the coarse cells at each time step implies that
0.2 · 9 · N � 1.8 · N local problems have to be solved. In three dimension, the number of coarse-cell prob-
lems to be solved increases to 0.2 · 27 · N � 5.4 · N. On the other hand, only N problems have to be solved
for the velocity reconstruction with the modified version of MSFV algorithm. Some numerical tests have been
performed to estimated the efficiency of the new algorithm in terms of CPU time for incompressible flow prob-
lems in 2D heterogeneous media. In our implementation of the MSFV algorithm, the CPU time spent to
reconstruct the velocity field with the original algorithm was 1.4–2.2 times larger than the time needed by
the new algorithm.

The new MSFV algorithm is not only more efficient, but also more flexible. Indeed, as we will see in the
following for the case of compressible flow, additional physical processes can be easily included without affect-
ing the dual basis functions when velocity is reconstructed. From now on we employ only one set of basis func-
tions, therefore we will refer to the dual basis functions simply as ‘‘basis functions’’.

4. Multiscale finite-volume method for compressible multiphase flow

The main challenge with the extension of the above algorithm to compressible flow is to keep the coarse-
scale transmissibilities independent of the pressure. Pressure-dependence in the basis functions might require
frequent updates, resulting in major loss of attractiveness of the method. The major concern is to avoid this
loss of efficiency and keep the solution accurate at the same time. Of course one could introduce an adaptivity
criterion and update the basis functions selectively when the pressure change exceed a given threshold. How-
ever, as we show in this paper, in the framework of the MSFV method it is possible to obtain accurate results
while keeping the basis functions independent of the pressure. Compressibility effects are then taken into
account in the coarse problem and, if necessary, in the reconstruction of fine-scale velocity and fluxes. This
is made possible by the modified MSFV algorithm proposed in this paper, which does not employ velocity
basis functions.

The theoretical justification for this approach relies on the assumption that the last three terms on the r.h.s.
of Eq. (4) are small, i.e. temporal and spatial variations of ba and / within a dual coarse cell are negligible.
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These are good approximations for slightly and moderately compressible flows. Note that the time derivative
and gradient in the last two terms of Eq. (4) involve lnba, which displays much smoother variations than ba

itself. Of course, ba and / may vary significantly over the whole domain and the coarse pressure equation has
to account for compressibility.

In Fig. 2 a coarse outline of the MSFV algorithm for compressible flow is given. Each time step n includes
three loops. The coupling loop consists of several iterations to couple the nonlinear pressure equation with the
system of nonlinear phase-transport equations. Each iteration, mc, of the coupling loop consists of a pressure
loop and a saturation loop. At each iteration of these loops linearized equations are solved and convergence is
achieved by the Newton–Raphson method. First, the linearized pressure equation is solved implicitly by the
MSFV method at each iteration, mp, of the pressure loop, then the linearized system of transport equations is
solved implicitly inside each coarse cell �Xk at each iteration, ms, of the saturation loop. Coupling is achieved by
an overlap between adjacent coarse cells, i.e. the local boundary conditions are defined by the values in the
neighbor cells and are updated at each saturation iteration. If necessary to achieve stability in the saturation
loop, under-relaxation of the variable is employed. The whole algorithm is sequentially implicit in p and Sa. If
needed, the coupling between the pressure and the saturation equations may be increased by reducing to one
the maximum number of iterations of the pressure and the saturation loop.

In the following we will explain the steps of the algorithm outlined in Fig. 2 in more detail. The basis func-
tions are exactly the same as for incompressible flow and are updated selectively according to a criterion based
on total-mobility change. For completeness, we explain how the basis functions are calculated. Extraction of
coarse-scale transmissibilities from the basis functions is analogous to the incompressible-flow case, but now
Fig. 2. The MSFV algorithm for compressible flow.
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the transmissibilities of each a-phase are considered separately. The coarse-scale pressure equation, together
with the reconstruction of the fine-scale fluxes, represents the core of the MSFV method for compressible flow.
Special attention is paid to the consistent computation of coarse-scale pressure and fine-scale fluxes, which
have to be conservative. Different approximations are considered to compute the accumulation term and
the fluxes for the coarse-scale pressure equation and to reconstruct the fine-scale fluxes. Finally, the discreti-
zation of the saturation equations is presented.

4.1. Basis functions and effective coarse-scale transmissibilities

According to the definitions given in steps 1 and 2 of Section 3, a coarse grid and a dual coarse grid are
imposed. In each dual coarse cell, ~Xe, a set of basis functions, ~He

i , is constructed; one basis function for each
corner xi of the dual cell. For Cartesian grids we have 2d basis functions per dual cell, where d is the number of
dimensions. Each basis function is the local numerical solution of the elliptic equation
r � ðk � r ~He
i Þ ¼ 0 in ~Xe. ð6Þ
Boundary conditions are given at the corners xk by
~He
i ðxkÞ ¼ dik; ð7Þ
and at the faces o~Xe n fxkg by
r? � ðk � r ~He
i Þ? ¼ 0; ð8Þ
where the subscript ^denotes the vector component normal to o~Xe. Eq. (8) is a closure approximation to local-
ize the problem and in the incompressible case it is the only modeling assumption.

A 3d-point stencil is used to write the mass-balance equation for the coarse cells and solve the coarse-scale
pressure equation. Analogously to the incompressible case, effective transmissibilities are extracted from the
basis functions ~He

k, but now also ba has to be taken into account. The contribution of a pressure signal of
strength one at node xk to the a-phase flux in ~Xe is defined as
Te
ak ¼ �bafak � r ~He

k; ð9Þ

where
fa ¼
kra=laPm
b¼1krb=lb

ð10Þ
is the fractional flow of the a-phase. Thus, given the interface between two coarse cells, o�Xij ¼ o�Xi \ o�Xj, we
define the transmissibility pertinent to the node xk as
½T ak�ij ¼
X2d

e¼1

Z
o�Xij\~Xe

Te
ak � gdC; ð11Þ
where g is the unit vector normal to o�Xij and directed from �Xi to �Xj. Note that transmissibilities are antisym-
metric with respect to the indices i and j, i.e. [Tak]ij = �[Tak]ji. Eq. (11) defines the flux across o�Xij extracted
from all basis functions defined in dual cells that are adjacent to the node xk and intersect the interface. It
represents the contribution to the flow across the interface for a single pressure signal of strength one applied
at the node xk.

4.2. Coarse-scale pressure equation

A convenient discrete form of Eq. (4) can be obtained by considering the time-implicit discrete formulation
of Eq. (1)
V i
h/nþ1bnþ1

a Snþ1
a ii � h/

nbn
aSn

aii
Dt

þ
XN

k¼1

XN

j¼1

½T nþ1
ak �ij�pnþ1

k ¼ �V ihbnþ1
a qnþ1

a ii; ð12Þ
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where a = 1, . . . , m and i = 1, . . . , N. The old and new time steps are denoted by the superscript n and n + 1,
respectively, Dt is the time increment, V i ¼

R
�Xi

dV is the volume of the coarse cell �Xi, and h ii ¼ 1
V i

R
�Xi

dV . Eq.
(12) is the mass balance equation for the a-phase in the coarse cell �Xi and the transmissibility [Tak]ij transforms
the pressure signal �pk at the node xk into its contribution to the a-flux across the boundary o�Xij. Eq. (12) are
linearized around �pmp

k � �pnþ1
k with Snþ1

a ¼ Smc
a , divided by hbmp

a ii, and added. In the following, to simplify the
notation, we replace the iteration superscripts mc and mp by m, as it is clear from the context and from the coarse
outline of the MSFV algorithm in Fig. 2 to which loop the superscript refers. The resulting linearized system of
N equations for the coarse-scale pressure is
XN

k¼1

V i

Dt
Cidik þ Aik

� �
�pmþ1

k ¼ V i

Dt
½Ci�pm

i þ Qi�; ð13Þ
in which the ith equation represents the mass-balance equation for the coarse cell i. In Eq. (13) we have intro-
duced the coefficients
Ci ¼
Xm

a¼1

bm
aSm

a
o/
o�p

���mD E
i
þ /mSm

a
oba
o�p

���mD E
i
þ Dt qm

a
oba
o�p

���mD E
i

hbm
aii

; ð14Þ

Qi ¼
Xm

a¼1

/nbn
aSn

a

� �
i
� /mbm

aSm
a

� �
i
� Dt bm

aqm
a

� �
i

hbm
aii

; ð15Þ
and the matrix
Aik ¼
Xm

a¼1

XN

j¼1

½T m
ak�ij
hbm

aii
. ð16Þ
The accumulation term Qi includes both the source terms and the effects of compressibility, and the coefficient
Ci contains the derivatives of the pressure-dependent quantities arising from linearization of Qi. In each step of
LOOP III (Fig. 2) the pressure at the new iteration level, �pmpþ1

k , is obtained by multiplying the r.h.s of Eq. (13) by
the inverse of the differential operator on the l.h.s. When coarse-scale pressure converges and LOOP III termi-
nates, then Ci = 0. For the quantities in brackets, which have to be evaluated inside the coarse cells and at their
interfaces, different approximations will be considered. These approximations, which will be discussed in
Section 4.4, must be fully consistent with the flux reconstruction in order to guarantee mass-conservation.

4.3. Conservative fine-scale fluxes

After the coarse-scale pressure has been computed, a fine-scale pressure field can be reconstructed by super-
imposing the basis functions multiplied by the corresponding coarse pressure values, i.e.
~pm ¼
XM

e¼1

XN

k¼1

�pm
k
~He

k. ð17Þ
This pressure field cannot be used directly to compute the fine-scale fluxes because the latter would lead to
severe mass-balance errors at the dual-cell interfaces [10]. However, ~pm can be used to extract the boundary
conditions to solve a parabolic problem in each coarse cell and compute fine-scale fluxes. If accumulation term
and boundary conditions are defied consistently with the coarse-pressure problem, the resulting fluxes are
locally conservative.

Given a coarse cell �Xi we numerically compute the local fine-scale pressure as the solution of the equation
Xm

a¼1

1

hbm
aii
r � ðbm

af m
a km � rpmÞ ¼ Q

Dt
ð18Þ
with the boundary conditions
ðbm
af m

a km � rpmÞ � g ¼ �
XN

k¼1

Tem
ak�p

m
k � g at o�Xi \ ~Xe ð19Þ
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for each phase a = 1, . . . , m and the accumulation term defined as
Q ¼
Xm

a¼1

/nbn
aSn

a � /mbm
aSm

a � Dtbm
aqm

a

hbm
aii

. ð20Þ
From the fine-scale pressure, pm, the fine-scale fluxes,
F ¼
�
Pm
a¼1

ðbm
af m

a Þk
m � rpm in �Xi;

Pm
a¼1

PN
k¼1

Tem
ak�p

m
k at o�Xi \ ~Xe

8>><
>>:

ð21Þ
can be obtained and used to solve the m � 1 transport equations.
4.4. Three models to obtain consistent fine-scale fluxes

To ensure conservative fine-scale fluxes it is important that coarse-scale pressure and fine-scale fluxes are
computed consistently. That means that, in order to avoid mass-balance errors, the coarse-scale flux across
each face o�Xij has to be equal to the integral of the fine-scale fluxes across the same face, i.e.
XN

k¼1

½T m
ak�ij�pk ¼

XN

k¼1

XM

e¼1

Z
o�Xij\~Xe

Tem
ak�pk � gdC; ð22Þ
and that the coarse-scale accumulation term has to be equal to the integral of the fine-scale accumulation
terms over the coarse block �Xi, i.e.
V iQi ¼
Z

�Xi

QdV . ð23Þ
It is straightforward to see that Eq. (22) is automatically satisfied by imposing Eq. (19) as boundary conditions
at o�Xij, and Eq. (23) by the definition of the coarse scale accumulation term given in Eq. (15). Thus, it is guar-
anteed by construction that the fine-scale fluxes are conservative. In the following we introduce three models
that rely on different assumptions for ba and / to compute fluxes and accumulation terms.

4.4.1. Piece-wise constant ba and / (PWC)
The first model assumes that ba and / can be approximated by piecewise constant distributions, this means

that variations of these quantities over distances of the order of the coarse-cell size can be neglected (constant
within a coarse cell). Thus, we assume that
ba ’ �bai ¼ bað�piÞ in �Xi ð24Þ

and
/i ’ �/i ¼ /ð�piÞ in �Xi. ð25Þ

This model is completely justified for slightly compressible fluids and porous media and it is consistent with
the calculation of coarse-scale transmissibilities, which also neglects variations of ba and / over distance of the
order of the coarse-cell size (constant within a dual coarse cell). This formulation has the numerical advantage
that the fine-scale and coarse-scale accumulation terms become independent of Sm, i.e.,
Qi ¼ �Qi :¼ ��/m
i þ �/n

i

Xm

a¼1

�bn
aihSn

aii
�bm

ai

� Dt
Xm

a¼1

hqm
aii; ð26Þ
and the coefficient Ci can be written as
Ci ¼ �Ci :¼ o�/
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The term Tem
ak, which appears in the definition of the coarse-scale transmissibilities, Eq. (11), and in the bound-

ary conditions for reconstruction of the fine-scale fluxes, Eq. (19), is now defined as
Te
ak ¼ �

�bai þ �baj

2
fak � r ~He

k at o�Xij. ð28Þ
4.4.2. Coarse-scale ba and / in the accumulation term (CSA) and fine-scale ba for the fluxes

To improve the ability of our algorithm to model highly compressible flow we first relax the hypothesis of
piecewise constant ba and compute them from the reconstructed fine-scale pressure field. Thus we define
ba ¼ bað~pÞ ð29Þ
in Eqs. (11), (18), (19) and (21), whereas piecewise constant ba and / are still used for the accumulation terms.
Note that this model retains the numerical advantage that the accumulation term is independent of Sm.

4.4.3. Fine-scale ba and / in the accumulation term (FSA) and for fluxes

Finally, to deal with highly transient compressible flow, we relax the hypothesis of piecewise constant ba

and / for the accumulation term, such that in Eqs. (15) and (20) we use ba ¼ b0að~pÞ and / ¼ /0ð~pÞ with the
constraints hb0að~pÞi ¼ bað�pÞ and h/0ð~pÞi ¼ /ð�pÞ.

4.5. Phase-transport equations

After the fine-scale fluxes are reconstructed, the m � 1 phase-transport equations can be solved implicitly
inside each coarse cell �Xk (LOOP IV). Coupling is achieved by an overlap between adjacent coarse cells. After
linearization, the discrete transport equation for the a-phase saturation, Smþ1

a , becomes
/mbm
a

Dt
Smþ1

a ¼ �D Smþ1
b � Sm

b

� �
�r � f 0aF þ /nbn

aSn
a

Dt
� bm

aqm
a; ð30Þ
where
D ¼
Xm�1

b¼1

r � of 0a
oSb

����
m

F þ bm
a

oqa

oSb

����
m� �

ð31Þ
and
f 0a ¼
bm

akm
a=laPm

b¼1bm
bkm

b=lb

. ð32Þ
To guarantee mass conservation it is important that pressure-dependent variables, i.e. ba and /, are defined
consistently with the pressure equation, i.e. according to the same model.

5. Numerical experiments

The extension of the MSFV method to compressible multiphase flow is based on the assumption that the
basis functions can be kept independent of the pressure and that they can be computed exactly as for the
incompressible case. Rigorously, this assumption is only justified for a slightly compressible flow for which
the effects of compressibility can be neglected over a length scale of the order of the coarse cell size. In this
case, the last three terms on the r.h.s. of Eq. (4) are approximately zero within a coarse cell (or a dual cell)
and the PWC model is a natural choice. In this section we show that pressure-independent basis functions also
permit an accurate description of highly compressible flow. In this case, the accuracy of the solution can be
improved by using the CSA or the FSA model.

Since we neglect heat transfer and assume constant temperature, the compressibility of the flow can be
simply characterized by the isothermal compressibility coefficients of the fluids,
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ca ¼ �
1

V
oV
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����
T

¼ 1
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����
T

ð33Þ
and by the rock compressibility
cR ¼ �
1

/
o/
op

. ð34Þ
The compressibility coefficients of rocks and liquids are typically of the order of 10�9. This means, for in-
stance, that the volume of a liquid, resp. the porosity of a medium, at atmospheric pressure, decreases only
by 1% if the pressure is increased by a factor of 100 (i.e. to 10 MPa). Gases are far more compressible. The
isothermal gas compressibility coefficients, ca, at atmospheric pressure are of the order of 10�5. Thus, it is suf-
ficient to double the pressure (i.e. to apply a pressure of about 200 kPa) to reduce the volume of a gas by a
factor of 2.

In the following, the porous matrix and the liquid phases will be treated as incompressible and only the
compressibility of the gas phase will be taken into account. This assumption is well justified by the large
differences among the compressibility coefficients. It is evident that if the MSFV method is able to model a
compressible gas phase, even more so it is able to model slightly compressible liquids and rocks. The gas com-
pressibility coefficients cannot be considered constant, but vary with the pressure. We assume that the gas
phase behaves like an ideal gas. The isothermal compressibility coefficient of an ideal gas is proportional to
the inverse of the pressure, i.e. ca � 1/p, which results in the well-known linear relationship between the density
and the pressure,
ba ¼
ba0

p0

p; ð35Þ
where ba0 = ba(p0). Table 1 illustrates the physical properties of the fluids considered in the numerical
simulations.

In the numerical experiments we consider transport of a tracer in a gas flow, imbibition and drainage of a
partially saturated reservoir, depletion of a gas–liquid reservoir and water-flooding of an oil–gas reservoir. In
order to separate the inaccuracy introduced by the compressibility models from the inaccuracy introduced by
the MSFV algorithm, we first assess and discuss the performance of the three compressibility models proposed
in Section 4.4 for 1D homogeneous media. Then, the application to more realistic highly heterogeneous 2D
media is presented. The 1D horizontal domain of size L consists of 100 fine cells that have the same perme-
ability. Dirichlet boundary conditions are imposed at the two ends of the computational domain. The coarse
grid used in the MSFV method consists of five cells, which corresponds to an upscaling factor of 20. The per-
meability of the 2D horizontal domain of size Lx · Ly is represented on a fine 220 · 60 grid. It is the same as
the top layer of the second model of the 10th SPE Comparative Solution Project (SPE 10) [5], which was
designed as a benchmark for different upscaling techniques. This layer belongs to a Tarabert formation with
isotropic horizontal permeability that varies over six orders of magnitude. The variance of the log-permeabil-
ity is r2

ln k ¼ 5:49 and the coefficient of variation is CV = 2.97 (Fig. 3). The coarse grid used in the MSFV
method consists of 22 · 6 cells, which corresponds to an upscaling factor of 10 · 10. At the long sides no-
flow boundary conditions are imposed, while constant-pressure boundary conditions are imposed at the short
sides.

The MSFV solution is compared with a reference solution obtained by solving a fine-scale problem. The
overall solution algorithm is sequentially implicit in p and Sa. For the fine-scale solution, an upwind scheme
1
ties of the fluids used in the numerical simulations

Viscosity l (Pa s) Density b0 (kg/m3) 1/p0 (Pa�1)

10�3 1000 –
10�2 900 –
1.8 · 10�5 1.20 10�5

ne 10�5 0.68 10�5

n dioxide 1.4 · 10�5 2.81 10�5



Fig. 3. The natural logarithm of the 2D permeability field; the permeability field is extracted from the top layer of the three-dimensional
SPE 10 model; the variance of the log-permeability is r2

ln k ¼ 5:49, which corresponds to a coefficient of variation CV = 2.97.
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is used for the relative permeabilities, whereas a central scheme is used for ba. In the MSFV method, the same
discretization scheme is employed to solve the local problems for the flux reconstruction, whereas a central
scheme for the total mobility is used to compute the basis functions in order to keep them independent of pres-
sure distribution.

5.1. Tracer transport in gas

First we consider the case in which the 1D homogeneous reservoir is initially saturated with air and at
atmospheric pressure (0.1 MPa). At the left boundary an ideal tracer is injected at constant concentration
c0 and at a constant pressure of 1 MPa. The pressure at the right boundary is kept constant at 0.1 MPa. Note
that, according to the ideal gas law, the air density varies by a factor of 10 over the whole domain. This prob-
lem can be modeled by treating the pure gas and the gas with tracer as separated phases with linear relative
permeabilities. In this framework, the saturation represent the concentration of the tracer normalized by the
injection concentration, i.e. S = c/c0. Dispersion is not modeled explicitly and only numerical dispersion is
present.

In Fig. 4 the normalized concentration, S = c/c0, at four different dimensionless times t/s = 2.5 · 10�3,
2.5 · 10�2, 1.25 · 10�1 and 2.5 · 10�1 is plotted, where s = l/L2/kDp, l = lair and Dp is the applied pressure
difference between the left and the right boundaries. At early time (e.g. t/s = 2.5 · 10�3), differences between
the MSFV solutions and the fine-scale reference solution are observed. These are due to the fact that elliptic
pressure equations are solved in the dual coarse cells, which results in a faster propagation of the reconstructed
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Fig. 4. One-dimensional tracer transport in gas; normalized tracer concentration, S = c/c0, (a) and pressure (b) at dimensionless times t/
s = 2.5 · 10�3, 2.5 · 10�2, 1.25 · 10�1 and 2.5 · 10�1 (s = lair/L2/kDp) for the fine-scale reference solution (crosses), the PWC model (dot-
dashed line), the CSA model (dashed line), and the FSA model (solid line); the upscaling factor is 20 and flow is from left to right.
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pressure signal (Eq. (17)) compared with the reference-pressure signal, which is the solution of a parabolic
equation (Fig. 4). Indeed, if the coarse pressure �p changes at one node of the dual grid, the reconstructed pres-
sure field ~p immediately changes in all adjacent dual cells. This effect has a larger impact on the saturation
solutions if the accumulation term is computed with constant b ¼ bð�pÞ within a coarse cell (PWC and CSA
models). At later time, however, all three models perform well and are in very good agreement with the ref-
erence solution. It is important to notice that discrepancies at early time do not increase, but decrease with
time. The reason is that all three models are very accurate in predicting the coarse-scale mass fluxes at
coarse-cell interfaces. The deviations from the reference solution observed at early time are due to the flux-
reconstruction procedure, which is inaccurate if the curvature of the pressure profile is large, but does not
affect the coarse-scale mass balance. In general, we can say that, even though differences are minor, the
FSA model provides the most accurate saturation solution and the PWC model the most accurate pressure
solution.

We now consider an analogous numerical experiment in the 2D heterogeneous reservoir described earlier
(Fig. 3). As in the 1D test case, the reservoir is initially saturated with air and the pressure is 0.1 MPa.
Constant pressure boundary conditions are imposed at the left and right boundaries (10 MPa and
0.1 MPa, respectively) and an ideal tracer at constant concentration c0 is injected at the left boundary. Linear
relative permeabilities are employed for both phases. Note that a factor of 100 variation of air density cor-
responds to the applied pressure difference. The MSFV solutions are in good agreement with the fine-scale
reference solution as can be seen in Fig. 5, where the maps of the normalized-concentration, S = c/c0, at
t/s = 5.7 · 10�1 are compared. The time scale s is defined by s ¼ l/L2

x= expðhln kiÞDp, where Lx is the length
of the reservoir and l is the viscosity of the injected fluid. This result shows the robustness and accuracy of the
three compressibility models, which provide accurate solutions for problems with extreme density variations
within a single coarse cell. Indeed, in the test case considered, a pressure drop of about 8 MPa takes place in
the low-permeability region between x = 20 and x = 40 (Fig. 3). This corresponds to a density variation by a
factor of 40 within a coarse cell. The accuracy of the MSFV solutions can be expressed in terms of the L1-
errors,
�ðSÞ ¼ kS � Srefk1

kSref � S0k1

; ð36Þ
where S0 = S(t* = 0) is the initial condition (Table 2), and by drawing the isoline of S � Sref (Fig. 6). The most
accurate solutions are obtained with the CSA and FSA models.

5.2. Imbibition and drainage of a partially saturated reservoir

In this section we study the displacement of a phase by another phase that has a different compressibility.
Since the two phases are immiscible, the relative permeabilities are modeled as quadratic functions of the sat-
uration. Note that in the case of imbibition in a gas-saturated reservoir, the effects of compressibility are
almost negligible. Indeed, due to the large difference in viscosity between gas and water, the pressure drop
mainly takes place in the water phase and the very small pressure gradient in the gas phase does not allow
large density variations. Thus, as a more challenging test case, we consider the injection of a mixture consisting
of 90% water and 10% air in a reservoir that initially contains 10% of water and 90% of air. The initial pressure
in the reservoir is 0.1 MPa. Dirichlet conditions are applied at the western and eastern boundaries (1 MPa and
0.1 MPa, respectively). This corresponds to a factor of 9 variation of air density.

The CSA and the FSA models give excellent results for the 1D homogeneous reservoir (Fig. 7). In contrast,
the PWC solution deviates from the reference and shows a stepwise behavior. Due to the assumption of piece-
wise constant b, air density is discontinuous at coarse-cell interfaces and this results in saturation jumps.
Moreover, the amount of water in the reservoir is larger and the water front travels faster than in the reference
solution (Fig. 7). This excess of water is accumulated at early times (i.e. t/s < 2.25 · 10�3) and stops increasing
at late times.

The simulations performed in the 2D heterogeneous domain, performed with Dp = 1 MPa, confirm the
results of the 1D simulations (Figs. 8 and 9). The PWC model predicts an excess of water in the reservoir,
a wetting front that travels slightly faster than the reference-solution front, and saturation jumps between



Fig. 5. Two-dimensional tracer transport in gas; normalized tracer concentration, S = c/c0, at dimensionless times t/s = 5.7 · 10�1

(s ¼ lair/L2
x= expðhln kiÞDp) for the fine-scale reference solution (a), the PWC model (b), the CSA model (c), and the FSA model (d); the

upscaling factor is 10 · 10.

Table 2
L1 errors of the 2D saturation fields (�(S) = iS � Srefi1/iSref � S0i1) for the three compressibility models; the upscaling factor is 10 · 10

Problem Dp (MPa) t* [�] �(S) Figure

PWC CSA FSA

Gas tracer test 10 5.7 · 10�3 9.0 · 10�2 8.2 · 10�2 5.3 · 10�2

Gas tracer test 10 5.7 · 10�2 6.6 · 10�2 5.1 · 10�2 4.9 · 10�2

Gas tracer test 10 5.7 · 10�1 3.9 · 10�2 2.5 · 10�2 2.5 · 10�2 5, 6
Imbibition 1 3.1 · 10�1 2.9 · 10�2 2.1 · 10�2 2.2 · 10�2 8, 9
Imbibition 1 3.1 4.1 · 10�2 1.3 · 10�2 1.3 · 10�2 8, 9
Depletion 1 2.9 · 10�3 4.8 · 10�1 3.8 · 10�1 3.9 · 10�1 12
Depletion 1 2.9 · 10�2 3.6 · 10�1 2.1 · 10�1 2.1 · 10�1

Depletion 1 2.9 · 10�1 2.2 · 10�1 9.2 · 10�2 8.9 · 10�2 12
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coarse cells in the low-permeability region between x = 20 and x = 40, where the pressure drop is about
0.9 MPa. The solutions obtained with the CSA and FSA models are very accurate and almost identical
(see also Table 2).
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Fig. 6. Two-dimensional tracer transport in gas; normalized tracer-concentration error, S � Sref, at dimensionless times t/s = 5.710�1
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Fig. 7. One-dimensional imbibition problem; water saturation (a) and pressure (b) at dimensionless times t/s = 2.25 · 10�3, 2.25 · 10�2,
1.13 · 10�1 and 2.25 · 10�1 (s = lw/L2/kDp) for the fine-scale reference solution (crosses), the PWC model (dot-dashed line), the CSA
model (dashed line), and the FSA model (solid line); flow is from left to right and the arrow indicates the temporal evolution of the
pressure profiles.
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Fig. 8. Two-dimensional imbibition problem; water saturation at dimensionless times t/s = 3.1 (s ¼ lw/L2
x= expðhln kiÞDp) for the fine-

scale reference solution (a), the PWC model (b), the CSA model (c), and the FSA model (d); the upscaling factor is 10 · 10.
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To highlight the differences between the CSA and FSA models we consider a drainage problem in which the
accumulation term plays a relevant role. In the reservoir, which initially contains 90% water and 10% air, a
mixture of 10% water and 90% is injected from the left. As in the previous test case, the initial pressure is
0.1 MPa and Dirichlet boundary conditions are applied at the left and right boundaries (1 MPa and
0.1 MPa, respectively). The displaced fluid is less mobile and accumulates ahead of the invading front. In this
region the pressure increases and air is compressed, which results in a higher water saturation. Fig. 10 shows
the solution of the 1D homogeneous problem at time t/s = 0.25. Whereas the result obtained with the FSA
model is still accurate, the solutions obtained with the other two models exhibit a stepwise water-saturation
profile. This is due to the fact that in the CSA and PWC models constant air density is assumed in each coarse
cell for the accumulation term. According to these models, air is uniformly compressed within a coarse cell,
which is not a good approximation in the region ahead of the invading front.

5.3. Depletion of a liquid–gas reservoir

As an ultimate test for the compressibility models, we considered the depletion of a liquid–gas reservoir. The
reservoir is initially at a pressure of 1 MPa and contains 50% water and 50% air. The relative permeabilities are
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Fig. 9. Two-dimensional imbibition problem; water-saturation error, Sw � Sref
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modeled as quadratic functions. At time zero the right boundary is opened and brought to a pressure of
0.1 MPa. The left boundary is kept at a pressure of 1 MPa with Sw = 0.5. When the pressure drops, air expands
and the saturation in the reservoir changes. Note that the saturation distribution is compressibility driven in the
sense that it only depends on the compressibility ratio of the two fluids and would remain equal to the initial
saturation if the two fluids had the same compressibility.

The distributions of water-saturation and pressure for the 1D homogeneous test case are shown in Fig. 11,
which clearly show that the PWC model fails to predict the correct saturation profile. At early times, the sat-
uration distribution is non-monotonic and the saturation gradient in the coarse cells is reversed compared to
the reference solution. This can be intuitively explained by the fact that in the reference solution the mass flux
increases going from left to right, even though the air density decreases. The density decrease partially
compensates the effects of the increasing pressure gradient and relative permeability, and reduces the growth
of air-mass flux. Since in the PWC the fine scale fluxes are reconstructed neglecting compressibility within
coarse cells, the air flux tends to be underestimated in the left and overestimated in the right part of the cell,
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Fig. 10. One-dimensional drainage problem; water-saturation (a) and pressure (b) at dimensionless time t/s = 2.5 · 10�1 (s = lair/L2/
kDp) for the fine-scale reference solution (crosses), the PWC model (dot-dashed line), the CSA model (dashed line), and the FSA model
(solid line); flow is from left to right.
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Fig. 11. One-dimensional depletion problem; water-saturation (a) and pressure (b) at dimensionless times t/s = 0.14, 1.4, and 14 (s = lair/
L2/kDp) for the fine-scale reference solution (crosses), the PWC model (dot-dashed line), the CSA model (dashed line), and the FSA model
(solid line); the arrows indicate the temporal evolution of the profiles.
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which results in a local water-phase accumulation at the right coarse-cell boundary. In a sense, the decrease of
air saturation going from left to right yields a decrease of relative permeability, which takes the place of air-
density decrease in reducing the growth of the air-mass flux. Note, however, that the reconstructed pressure, ~p,
is in excellent agreement with the reference solution.

The saturation solutions obtained with the CSA and FSA models are more accurate. However, they also
deviate from the reference solution, e.g. there is a slower drop of the water saturation and a very pronounced
knee located at the center of the eastern coarse cell. Since in the MSFV method the fine-scale pressure ~p is recon-
structed by a linear combination of the basis functions, which are obtained neglecting compressibility and solv-
ing elliptic problems, the maximum pressure gradient, r~p, is limited and ~p is unable to capture strong
curvatures. Note that this is less critical for the PWC model since the smaller pressure gradient is compensated
by a larger ba. If the saturation distribution is completely determined by the pressure trough the compressibility



Fig. 12. Two-dimensional depletion problem; water saturation at dimensionless times t/s = 2.9 · 10�3 (left) and t/s = 0.29 (right) for the
fine-scale reference solution (a,e), the PWC model (b,f), the CSA model (c,g), and the FSA model (d,h); the upscaling factor is 10 · 10 and
s ¼ lair/L2

x= expðhln kiÞDp; only the right part of the reservoir is shown (i.e. from x = 120 to x = 220).
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coefficient, significant differences between the reference solution and the solutions obtained with the CSA and
the FSA models can occur. This problem might be overcome by using the pressure obtained from the flux
reconstruction, which includes the effects of compressibility (Eq. (18)), instead of ~p to compute ba.

The CSA solution and the FSA solution are very similar and differences can be observed only at very early
times when the accumulation terms play a more important role. Note that in the case of liquid and gas (which
have very different viscosities) the large mobility of air reduces the impact of the accumulation term: it is more
convenient for the air to move rather than getting compressed. At early times, a slight overshoot of the FSA
solution can be observed in the most right coarse cell, more precisely between x = 80 and x = 90. Again, this
overshoot is due to the fact that ~p is obtained from basis functions that are solutions of elliptic problems.
When the reservoir is opened, the average accumulation in the right coarse cell is close to zero, but significant
deviations from zero occur locally. Therefore, within the coarse cell, the fluids distribute according to the accu-
mulation term.

The solutions of the 2D heterogeneous depletion problem are shown in Fig. 12, where the saturation maps
at time t/s = 2.9 · 10�3 and t/s = 0.29 are plotted. Whereas the PWC model fails to predict the correct fine-
scale saturation distribution, the CSA and FSA models provide relatively accurate solutions, especially at later
times (see also Table 2). At early times, differences between the CSA and FSA models can be observed. In
particular, the CSA solution shows small saturation jumps between coarse cells (chessboard-like saturation
distribution), which are due to the piecewise constant b used in the accumulation term.
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Fig. 13. Two-dimensional flooding problem; methane- and oil-mass recovery as a function of the dimensionless time t/s
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5.4. Flooding of an oil-gas reservoir

Finally, we briefly demonstrate an application of the MSFV method to three-phase compressible flow in the
2D heterogeneous domain. We consider a reservoir that initially contains 70% oil and 30% methane and is at a
pressure of 0.1 MPa. Pressure at the left and right boundaries are set to 1 MPa and 0.1 MPa, respectively. At
time zero a third phase is injected at the left boundary; both water and CO2 injections are considered. For all
phases quadratic relative permeability are used. The resulting methane- and oil-recovery curves are shown in
Fig. 13. It can be seen that for the water-flooding test case the agreement with the reference curves is excellent.
In the case of CO2-flooding the oil-recovery predicted by the MSFV method is slightly higher.

6. Conclusions

Accurate solutions for a large spectrum of compressible-flow problems can be obtained with the MSFV
method without modifying the basis functions that are used to compute the coarse-scale transmissibilities.
The basis functions are computed as in the case of incompressible flow and are therefore independent of
the pressure. The effects of compressibility are taken into account to solve the coarse-scale pressure equation
and, if necessary, to reconstruct the fine-scale fluxes.

Three models with an increasing level of complexity in the flux reconstruction have been tested for multi-
phase compressible problems in which at least one phase follows the ideal gas law. The most simple model
(PWC model) neglects the effects of compressibility at the fine-scale and treats the flow as compressible only
at the coarse scale. This model is justified only for slightly compressible flows in which the typical length of
density variations is larger than the coarse-cell size. However, it proved to work also in case of significant den-
sity variations within a coarse cell. This demonstrates that this simple model can be successfully used to
describe the compressibility of the porous medium and the compressibility of liquids (at isothermal condi-
tions). In regions where large pressure drops occur over a coarse cell, the saturation field predicted by this
model is not accurate enough.

More accurate saturation distributions can be obtained with two more sophisticate models that take
into account the effects of compressibility in the fine-scale flux reconstruction. These models differ in the
way they treat the accumulation term: in one model (CSA model) the accumulation term does not depend
on the pressure distribution within the coarse cells, whereas in the other model (FSA model) it does. In most
problems they yield almost identical solutions, because the effects of the accumulation term are limited by the
large gas to liquid viscosity ratio, and the agreement with the reference saturation solution is excellent. The
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most accurate solutions are obtained with an accumulation term that depends on the pressure distribution
within the coarse cells.

The most challenging problem is the depletion of a gas-liquid reservoir in which the saturation distribution
is purely compressibility-driven. Even though this is an extreme test case, it is of great practical interest,
because it describes processes that take place in the vicinity of a well. Also for this test case the agreement
between the reference solution and the MSFV solutions is satisfactory, if compressibility is taken into account
in the flux reconstruction. If, however, a more accurate prediction of the saturation is needed, the accuracy of
the MSFV solutions can be improved by using the pressure from the flux reconstruction to compute the den-
sity (in place of the pressure obtained by superimposing the basis functions multiplied by the corresponding
coarse-scale pressure). This can implicitly be done by solving fully compressible nonlinear problems for the
flux reconstruction in each coarse cell employing Newton–Raphson iterations. Another way to improve the
accuracy, specifically around a well, is to include gas compressibility in the well basis function. Indeed, it
has been shown by Wolfsteiner et al. [15] that correct modeling of wells in the MSFV method requires an addi-
tional basis function that accounts for the additional degree of freedom.

Acknowledgments

This work was supported by the ChevronTexaco/Schlumberger Technical Alliance as a part of the Intersect
Project. Thanks are due to Seong Lee and Christian Wolfsteiner of the Chevron Simulation Research Team in
San Ramon, CA, USA, and to Hamdi Tchelepi of the Petroleum Engineering Department at Stanford, CA,
USA, for contributing with many constructive discussions.

References

[1] J.E. Aarnes, V. Kippe, K.A. Lie, Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodel,
Adv. Water Res. 28 (2005) 257–271.

[2] T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for two phase Darcy flow, Comput.
Geosci. 6 (2002) 453–481.

[3] T. Arbogast, S.L. Bryant, A two-scale numerical subgrid technique for waterflood simulations, Soc. Petrol. Eng. J. (2002) 446–457.
[4] Z.M. Chen, T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput. 72

(242) (2003) 541–576.
[5] M.A. Christie, M.J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE 66599, presented at

the SPE Symposium on Reservoir Simulation, Houston, February 11–14, 2001.
[6] G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, New York, 1989.
[7] Y. Gautier, M.J. Blunt, M.A. Christie, Nested girding and streamline-based simulation for fast reservoir performance prediction,

Comput. Geosci. 3 (1999) 295–320.
[8] R.J. Hoeksema, P.K. Kitanidis, Analysis of the spatial structure properties of selected aquifers, Water Resour. Res. 21 (4) (1985) 563–

572.
[9] T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput.

Phys. 134 (1) (1997) 169–189.
[10] P. Jenny, S.H. Lee, H. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput.

Phys. 187 (1) (2003) 47–67.
[11] P. Jenny, S.H. Lee, H. Tchelepi, Adaptive multiscale finite-volume method for multi-phase flow and transport in porous media,

Multiscale Model. Simulat. 3 (1) (2004) 50–64.
[12] P. Jenny, S.H. Lee, H. Tchelepi, Fully implicit adaptive multi-scale finite-volume algorithm for multi-phase flow in porous media, J.

Comput. Phys., 2006 (submitted for publication).
[13] Ph. Renard, G. de Marsiliy, Calculating equivalent permeability: a review, Water Resour. Res. 20 (5–6) (1997) 253–278.
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